Dynamic fibre sliding along debonded, frictional interfaces

نویسنده

  • B. N. COX
چکیده

The problem is considered of a fibre that is driven dynamically, by compression at one end, into a matrix. The fibre is not initially bonded to the matrix, so that its motion is resisted solely by friction. Prior work based on simplified models has shown that the combination of inertial effects and friction acting over long domains of the fibre–matrix interface gives rise to behaviour that is far more complex than in the well-known static loading problem. The front velocity may depart significantly from the bar wave speed and regimes of slip, slip/stick and reverse slip can exist for different material choices and loading rates. Here more realistic numerical simulations and detailed observations of dynamic displacement fields in a model push-in experiment are used to seek more complete understanding of the problem. The prior results are at least partly confirmed, especially the ability of simple shear-lag theory to predict front velocities and gross features of the deformation. Some other fundamental aspects are newly revealed, including oscillations in the interface stresses during loading; and suggestions of unstable, possibly chaotic interface conditions during unloading. Consideration of the experiments and two different orders of model suggest that the tentatively characterized chaotic phenomena may arise because of the essential nonlinearity of friction, that the shear traction changes discontinuously with the sense of the motion, rather than being associated with the details of the constitutive law that is assumed for the friction. This contrasts with recent understanding of instability and ill-posedness at interfaces loaded uniformly in time, where the nature of the assumed friction law dominates the outcome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frictional heating in a unidirectional fibre-reinforced ceramic composite

Holmes and Shuler [1] recently found that significant internal heating occurs during the cyclic loading of fibre-reinforced ceramics. In their investigation, conducted with cross-ply carbon fibre/SiC matrix composites (hereafter referred to as Cf/SiC), it was observed that the extent of internal heating was strongly influenced by the peak fatigue stress and loading frequency. For example, durin...

متن کامل

Sliding along frictionally held incoherent interfaces in homogeneous systems subjected to dynamic shear loading: a photoelastic study∗

An experimental investigation was conducted to study dynamic sliding at high strain rates along incoherent (frictional) interfaces between two identical plates. The plates were held together by a uniform compressive stress, while dynamic sliding was initiated by an impact-induced shear loading. The case of freely-standing plates with no external pressure was also investigated. The dynamic stres...

متن کامل

Strength-based and fracture-based approaches in the analysis of fibre debonding

The debonding behaviour of fibres strongly affects the properties of fibre-reinforced composites. In the literature, two different approaches to the fibre debonding problem have been developed. In strength-based approaches [1-4], interracial debonding is assumed to occur once an interfacial strength is reached. In fracture-based approaches [5-9], the debonded interfacial zone is regarded as a t...

متن کامل

Estimation of Interfacial Shear in Ceramic Composites from Frictional Heating Measurements

A new approach for estimating the interfacial frictional shear stress in fiber-reinforced ceramics is presented. The approach is based upon measurement of the temperature rise which occurs during the cyclic loading of ceramic composites. This temperature rise, which is caused by the frictional slip of fibers within the composite, is related to the level of frictional shear stress which exists a...

متن کامل

Particle Velocimetry and Photoelasticity Applied to the Study of Dynamic Sliding Along Frictionally-Held Bimaterial Interfaces: Techniques and Feasibility

A laser interferometry-based technique was developed to locally measure the in-plane components of particle velocity in dynamic experiments. This technique was applied in the experimental investigation of dynamic sliding along the incoherent (frictional) interface of a Homalite–steel bimaterial structure. The bimaterial specimen was subjected to uniform compressive stress and impact-induced she...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006